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We investigate the dynamics of 2DOF linear subsystem with close frequencies with

attached nonlinear energy sink (NES). In this system, simultaneous targeted energy

transfer from both linear oscillators to the NES is possible. It was demonstrated that the

process of the TET can be analytically described as transient beats of relaxation—like

approach based on Hamiltonian structure of the system (study of the periodic orbits in

the absence of the damping) fails to provide insight into the TET process. The reason of

that is large number of secondary resonances activated through interaction between

two primary 1:1 resonances. In the damped system these resonances are eliminated and

then averaging—based approach is applicable. It was shown by the Hilbert Vibration

Decomposition (HVD) that in the damped case there is a single significant component of

the response regarded to the 1:1:1 resonance. Analytical model was verified

numerically and a fairly good correspondence was observed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Systems comprising linear substructures with essentially nonlinear attachments are intensively studied in the context
of vibration mitigation. Transient targeted energy transfer (TET, pumping) of energy from the substructure to the
essentially nonlinear attachment (nonlinear energy sink) was demonstrated and studied in [1–4]. In the same papers it has
been shown that properly designed, essentially nonlinear local attachments may passively absorb energy from transiently
loaded linear subsystems, acting as nonlinear energy sinks (NESs).

Addition of a relatively small and spatially localized nonlinear attachment leads to essential changes in the properties of
the whole system. Unlike common linear and weakly nonlinear systems, systems with strongly nonlinear elements are
able to react efficiently on the amplitude characteristics of the external forcing in a wide range of frequencies [4,5].

It was demonstrated [2,3] that the possibility of the energy pumping phenomenon in non-conservative systems can be
understood and explained by studying the energy dependence of the nonlinear undamped free periodic solutions
(nonlinear normal modes (NNM)) of the corresponding Hamiltonian system which are obtained when all damping forces
are eliminated. Recent investigation [6] based on the approach of invariant manifolds [7,8] has introduced an asymptotic
procedure suitable for explicit inclusion of damping within the framework of the nonlinear normal modes.

The steady-state response of the single—DOF linear system with strongly nonlinear attachment to external forcing
loading was studied in paper [9]. It was shown theoretically and experimentally that, in spite of weak coupling an
essentially nonlinear attachment is capable of absorbing steady-state vibration energy from the linear oscillator, thus
ll rights reserved.
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localizing the energy away from the directly forced subsystem. The energy absorption by strongly nonlinear attachment is
realized over a relatively broad frequency range, making it effective over a range of frequencies.

In recent studies it was demonstrated [10,11] that in close vicinity of the main resonance the system with NES can exhibit
quasiperiodic rather than simple periodic response, leading to qualitatively different dynamical behavior. As it was shown in
paper [11], strong mass asymmetry in periodically forced systems with essential nonlinearity may cause response regime
qualitatively different from either simply periodic or weakly modulated regimes in the vicinity of 1:1 resonance. This regime is
characterized by very deep oscillations of the modulated amplitude comparable to the amplitude of the response itself. This
response regime was considered in papers [11–18] and referred to as strongly modulated response (SMR).

Possible application of NES to the primary systems with multiple degrees of freedom (MDOF) subject to initial impact
excitation is intensively studied now. It was shown earlier by Vakakis et al. [19–21] that through resonance capture
cascades (RCC) the single NES attached to a MDOF substructure can passively extract broadband vibration energy via the
multi-frequency TET. Namely, the NES is captured into the resonance with each mode of the primary system consequently,
thus forming the cascade of resonance captures. These studies were carried out under assumption of incommensurable and
widely spaced natural frequencies of the MDOF substructure. Hence, the internal resonance condition between the modes
of linear substructure was not possible there. We would like to consider the TET in qualitatively different case, when the
primary linear system can have close frequencies. The simplest possibility of this sort is 1:1 internal resonance of the
modes of the 2DOF linear substructure. For this sake, we choose the linear subsystem as two weakly coupled linear
oscillators with identical frequencies and attach the NES to this substructure.

The structure of the paper is as follows. The second Section is devoted to description of the model. Section 3 describes
an analytic and numerical treatment of the underlying Hamiltonian system. Section 4 investigates analytically and
numerically the free, damped system. Section 5 contains concluding remarks and discussion.

2. Model description and motivation

As it was mentioned in the introduction, the model system should possess strong internal resonance (linear for the sake
of simplicity) and should be coupled to the NES. So, the system under consideration in the present section consists of two
weakly coupled linear oscillators with identical frequencies and standard purely cubic NES attached to one of these
oscillators. The linear subsystem of two oscillators is subject to initial impact excitation (See Fig. 1).

The equations of motion are as follows:

M €x1þkx1þek1ðx1�x2Þ ¼ 0

M €x2þkx2þek1ðx2�x1Þþkvðx2�vÞ3þcvð _x2� _vÞ ¼ 0

m €vþkvðv�x2Þ
3
þcvð _v� _x2Þ ¼ 0 (1)

where Mbm; cv �OðeÞ; kv �OðeÞ. System (1) is reduced to a non-dimensional form as follows:

t¼
ffiffiffiffiffi
k

M

r
t; ~c ¼

cvffiffiffiffiffiffiffi
Mk
p ; ~k1 ¼

k1

k
; ~k2 ¼

kv

k
; ~k2 ¼ a

~~k 2;

x1 ¼
y1ffiffiffiffiffiffi
~~k 2

q ; x2 ¼
y2ffiffiffiffiffiffi
~~k 2

q ;v¼
vffiffiffiffiffiffi
~~k 2

q (2)

and introducing (2) into (1) the following non dimensional system is obtained:

€y1þy1þe ~k1ðy1�y2Þ ¼ 0

€y2þ ~cð _y2� _vÞþe ~k1ðy2�y1Þþaðy2�vÞ3 ¼ 0
Fig. 1. Schematic model of a system under consideration.
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m

M
€vþ ~cð _v� _y2Þþaðv�y2Þ

3
¼ 0 (3)

Several assumptions concerning the system parameters are:
(1)
Fig.
ka ¼
Mass ratio is adopted to be small e¼m=M51

(2)
 All the coupling parameters are of e order: a¼ eka; ~c ¼ el
Then, System (3) reads:

€y1þy1þek1ðy1�y2Þ ¼ 0

€y2þy2þek1ðy2�y1Þþelð _y2� _vÞþekaðy2�vÞ3 ¼ 0

e €vþelð _v� _y2Þþekaðv�y2Þ
3
¼ 0 (4)

Before analytic investigation of the response regimes of System (4), let us present few time series plots for various initial
conditions—to make clear what peculiarities of the dynamics we are going to describe.

The results of first two time series plots (Figs. 2 and 3) suggest for existence of transient, strongly modulated beating
cycles. As it comes from Figs. 2 and 3 initial excitation concentrated on the first oscillator, leads to transient beating cycles
with deep modulation. They closely resemble the strongly modulated response (SMR) in externally forced linear oscillator
with the NES [11–18]. The number of cycles grows as initial excitation on the first oscillator is increased. Observing the last
two time series plots (Figs. 4 and 5) related to the case where the second oscillator was also initially excited one finds that
the picture slightly differs from the first two ones. First of all we do not obtain the pure beating SMR—like cycles. Then, the
first cycle appears to be much longer than the next one. However, one can still recognize the existence of transient beating
cycle (these cycles are circled on Figs. 4 and 5). It is clear from the results of the simulations (Figs. 2–5) that the targeted
energy transfer to the NES in this system occurs via excitation of finite number of modulation cycles at very close basic
frequencies. This scenario of the TET strongly differs from the behavior of the systems comprising linear subsystem with
remote, incommensurable natural frequencies and NES attached [21]: there are no cascades of the resonance captures at
different frequencies in this system. Therefore, the mechanism of the TET in System (4) is quite different from the
previously studied one and deserves special consideration.
2. Time series plot for relative displacement y2ðtÞ�vðtÞ. Initial conditions: _y10 ¼ 1; y10 ¼ y20 ¼ _y20 ¼ v0 ¼ _v0 ¼ 0; system parameters: l¼ 0:2;
4
3; k1 ¼ 1.
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Fig. 3. Time series plot for relative displacement y2ðtÞ�vðtÞ. Initial conditions: _y10 ¼ 1:5; y10 ¼ y20 ¼ _y20 ¼ v0 ¼ _v0 ¼ 0; system parameters: l¼ 0:2;

ka ¼
4
3; k1 ¼ 1.

Fig. 4. Time series plot for relative displacement y2ðtÞ�vðtÞ. Initial conditions: _y20 ¼ 1; y10 ¼ _y10 ¼ y20 ¼ v0 ¼ _v0 ¼ 0; system parameters: l¼ 0:2;

ka ¼
4
3; k1 ¼ 1.
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3. Underlying Hamiltonian system

We start our treatment from a consideration of the underlying Hamiltonian system. Thus setting l¼ 0 in (4) the
Hamiltonian system reads:

€y1þy1þek1ðy1�y2Þ ¼ 0
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Fig. 5. Time series plot for relative displacement y2ðtÞ�vðtÞ. Initial conditions: _y10 ¼ _y20 ¼ 1:5; y10 ¼ y20 ¼ v0 ¼ _v0 ¼ 0; system parameters: l¼ 0:2;

ka ¼
4
3; k1 ¼ 1.
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€y2þy2þek1ðy2�y1Þþekaðy2�vÞ3 ¼ 0

e €vþekaðv�y2Þ
3
¼ 0 (5)

New variables are introduced as follows,

j1expðitÞ ¼ _y1þ iy1

j2expðitÞ ¼ _y2þ iy2

j3expðitÞ ¼ _vþ iv (6)

Substitution of (6) into (5) and application of complexification-averaging (CX-A) technique yields the set of averaged
equations:

_j1 ¼
iek
2
ðj1�j2Þ

_j2 ¼
iek
2
ðj2�j1Þþ

3ieka

8
jj2�j3j

2ðj2�j3Þ

e _j3 ¼�
ie
2
j3þ

3ieka

8
jj3�j2j

2ðj3�j2Þ (7)

It can be shown that an averaged system (7) possesses two independent integrals of motion:

I1 ¼ jj1j
2þjj2j

2þejj3j
2

I2 ¼�
e
2
jj3j

2þ
3eka

16
jj2�j3j

4þ
ek
2
jj2�j1j

2 (8)

System (7) describes the dynamical flow in a state space of dimension 6. By simple manipulations, this number can be
reduced by one. We first present the complex variables in the polar form,

ji ¼NiexpðiyiÞ; 8i¼ 1;2;3 (9)

Introducing (9) into (7) yields:

_N1þ iN1
_y1 ¼

iek
2
ðN1�N2expð�iW1ÞÞ
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_N2þ iN2
_y2 ¼

iek
2
ðN2�N1expðiW1ÞÞþ

3ieka

8
jN2�N3expðiW3Þj

2ðN2�N3expðiW3ÞÞ

eð _N3þ iN3
_y3Þ ¼�

ie
2

N3þ
3ieka

8
jN3�N2expð�iW3Þj

2ðN3�N2expð�iW3ÞÞ (10)

where

Wi ¼ yi�y2; 8i¼ 1;3 (11)

Then, after few manipulations, System (10) and (11) in terms of new variables ðfN1;N2;N3;W1;W3gÞ is reduced to 5D
dynamical flow in the space R3

þ � S2:

_W1 ¼ Im
iek
2N1
ðN1�N2expð�iW1ÞÞ�

iek
2N2
ðN2�N1expðiW1ÞÞþ

3ieka

8N2
jN2�N3expðiW3Þj

2ðN2�N3expðiW3ÞÞ

� �� �

_W3 ¼
1

N2N3
Im �

i

2
N3þ

3ika

8
jN3�N2expð�iW3Þj

2ðN3�N2expð�iW3ÞÞ

� ��

�N2�
iek
2
ðN2�N1expðiW1ÞÞþ

3ieka

8
jN2�N3expðiW3Þj

2ðN2�N3expðiW3ÞÞ

� �
N3

�

_N1 ¼ Re
iek
2
ðN1�N2expð�iW1ÞÞ

� �

_N2 ¼ Re
iek
2
ðN2�N1expðiW1ÞÞþ

3ieka

8
jN2�N3expðiW3Þj

2ðN2�N3expðiW3ÞÞ

� �

_N3 ¼ Re �
i

2
N3þ

3ika

8
jN3�N2expð�iW3Þj

2ðN3�N2expð�iW3ÞÞ

� �
(12)

This system has two independent integrals of motion (8). In terms of new variables, they are rewritten as:

I1 ¼ jN1j
2þjN2j

2þejN3j
2

I2 ¼�
e
2
jN3j

2þ
3eka

16
jN2�N3expðW3Þj

4þ
ek
2
jN2�N1expðW1Þj

2 (13)

Two independent integrals of motion (13) are, of course, not enough to ensure integrability of System (12), but they
allow efficient exploration of its dynamics with the help of Poincare section. We construct it according to the following
conditions:

fN1 ¼ d; _N140; d40g \ fI1 ¼ h1g \ fI2 ¼ h2g (14)

where h1;h2 are constant values. It is worthwhile noting that Poincare’ section defined in (14) differs from the usually
defined ones by the value of d which is chosen to be nonzero positive value. The reason for this choice is quite obvious and
can be explained by the fact that N140 and thus common zero crossings are not possible. Moreover, it is rather difficult to
choose an appropriate value ofdthus to assure its future transversal crossings by the phase trajectory. Therefore, picking an
arbitrary value of d (which can be crudely bounded by

ffiffiffiffi
I1

p
) it is possible to find ‘‘holes’’ (empty areas) on a Poincare section

for certain values of initial conditions due to absence of the section crossings by a phase trajectory. This situation will be
illustrated below.

As a plane of Poincare section we choose the variables of relative phases defined by (11). Poincare’ map illustrated in
Fig. 6 is related to the low level of system energy or equivalently to a weak initial excitation (j10 ¼ 0:2; j20 ¼j30 ¼ 0).

Observing Fig. 6, one finds that there are certain regions of the section plane which are not pierced by the phase
trajectories. However, the existing piercing points of the section form the closed curves which are obviously related
to the tori of a quasi-periodic motion exhibited by System (12). In spite the fact that Poincare section constructed for an
averaged system (12) may be incomplete in a sense of the existing blank regions ð0oW1o3; 4:7oW1o2pÞ it still can
provide a clue to what happens in a system when an initial energy supplied to the system is increased over some threshold
value. To illustrate this we pick another set of initial conditions related to the higher values of energy initially supplied
to a system ðj10 ¼ 0:5; j20 ¼j30 ¼ 0Þ (Fig. 7). The initial points on Poincare’ sections are similar to the ones used for the
map of Fig. 6.

The results of Fig. 7 suggest for the destruction of the previously presented tori; the motion seems chaotic-like.
This result suggests that the system possesses additional significant resonances which should be taken into
account. Therefore, the assumption of major significance of internal resonance (1:1:1) relatively to others existing
in the system is not valid for higher energies of excitation. Consequently, averaged system (10) does not fit the original
one (5) for these higher values of initial excitation energies. To illustrate this we plot the time series of true
system (5) response together with that of averaged system (10) for both cases of lower and higher initial energies
(Figs. 8 and 9).
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Fig. 6. Poincare map for low values of initial energy ðj10 ¼ 0:2; j20 ¼j30 ¼ 0Þ.

Fig. 7. Poincare’ map for higher values of initial energy ðj10 ¼ 0:5; j20 ¼j30 ¼ 0Þ.
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It is clear from the results of Figs. 8 and 9 that for the higher values of initial excitation the envelope described by the
averaged system (10) does not resemble at all the response of the complete system (5) (Fig. 9) and this despite its fairly
good correspondence in the case of lower energies (Fig. 8). To provide additional explanation to the latter observed results
we performed FFT analysis of the true system response for both lower and higher energies of excitation (Figs. 10a and b).
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Fig. 8. Time series plot for the lower values of initially supplied energy. y10 ¼ y20 ¼ y30 ¼ _y20 ¼ _y30 ¼ 0; _y10 ¼ 0:2; system parameters:

k¼ 1; ka ¼
4
3; e¼ 0:01.

Fig. 9. Time series plot for the higher values of initially supplied energy. y10 ¼ y20 ¼ y30 ¼ _y20 ¼ _y30 ¼ 0; _y10 ¼ 0:5; system parameters: k¼ 1;

ka ¼
4
3; e¼ 0:01.
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As it comes from the FFT analysis brought in Figs. 10a and b for the lower values of initial excitation energies (Fig. 10a)
there are two sufficiently close significant harmonics in a vicinity of unity frequency attributed to the mainly considered
internal resonance (1:1:1). It is apparent one cannot restrict the consideration by these harmonics if higher initial energy is
supplied to the system (Fig. 10b). The spectrum presented at Fig. 10b is typical for chaotic response regimes. The
performed FFT analysis clearly demonstrates that for higher values of energies the resonance 1:1:1 breaks down and the
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Fig. 10. FFT for the true system (5) response regime: (a) lower values of supplied energy ðy10 ¼ y20 ¼ y30 ¼ _y20 ¼ _y30 ¼ 0; _y10 ¼ 0:2Þ; (b) higher values of

supplied energy ðy10 ¼ y20 ¼ y30 ¼ _y20 ¼ _y30 ¼ 0; _y10 ¼ 0:5Þ; system parameters: k¼ 1; ka ¼
4
3; e¼ 0:1.
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single-frequency averaging fails to provide reliable description of the system in the Hamiltonian case—the behavior of the
Hamiltonian system may well be chaotic and very far from one observed in the damped transitions. So,
contrary to previous studies of the TET phenomena [2,3,19,20] the nonlinear normal modes of the Hamiltonian system
cannot provide an insight into the damped transitions. The analytic approach should include the damping from the very
beginning.
4. Analysis of free, damped system

4.1. Hilbert transform analysis

As we have seen in the previous section dealing with conservative system (5) there is a certain difficulty in description
of system (5) response regimes by the averaged system (10) derived under assumption of (1:1:1) resonance condition.
Therefore, it is rather natural to ask whether this is also the case if the damping is present in (4). Namely, the question is
whether it is reasonable to use the averaging procedure in the general system (4) if the damping is present? For the system
without the damping the answer was negative. To answer this question we apply Hilbert Vibration Decomposition (HVD)
method developed by Feldman [22–24] to system (4) response for gradually increasing values of initial excitation
(Figs. 11–13). It should be noted that in each decomposition process we have picked the first two components of the
response which are illustrated on the plots (See Figs. 11–13).

From the results presented at Figs. 11–13 it is clear that unlike the previously considered underlying Hamiltonian
system the free, damped system subject to relatively high initial excitation exhibits a response primarily
including the lowest frequency component, related to the 1:1:1. It means that in the lowest order of approximation the
other higher frequency components of the response may be omitted under the base assumption of the 1:1:1 resonance
motion. This conclusion is correct for rather high values of energy (Figs. 12 and 13).

The results of the HVD procedure performed for the general free, damped system (4) response bring
additional motivation for proceeding with further analytical study of the system due to obvious overwhelming
significance of the principal frequency component related to the 1:1:1 resonance. So, one can hope that unlikely the
Hamiltonian system, the damped system will yield to averaging-based approach. Possible reason for this difference
between the undamped and the damped system is the well-known fact that the damping very efficiently destroys the
high-order resonances.
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Fig. 11. The Hilbert vibration decomposition of the signal YðtÞ ¼ y2ðtÞ�vðtÞ. The first two components of the signal are presented: (a) component

instantaneous frequency; (b) component envelope. The lowest frequency component is denoted by a solid line when a higher frequency component is

denoted by a dashed line. Initial conditions: y10 ¼ y20 ¼ y30 ¼ _y20 ¼ _y30 ¼ 0; _y10 ¼ 0:5; system parameters: k¼ 1; ka ¼
4
3; e¼ 0:01; l¼ 0:2.

Fig. 12. The Hilbert vibration decomposition of the signal YðtÞ ¼ y2ðtÞ�vðtÞ. The first two components of the signal are presented: (a) component

instantaneous frequency; (b) component envelope. The lowest frequency component is denoted by a solid line when a higher frequency component is

denoted by a dashed line. Initial conditions: y10 ¼ y20 ¼ y30 ¼ _y20 ¼ _y30 ¼ 0; _y10 ¼ 1; system parameters: k¼ 1; ka ¼
4
3; e¼ 0:01; l¼ 0:2.

Y. Starosvetsky, O.V. Gendelman / Journal of Sound and Vibration 329 (2010) 1836–1852 1845
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Fig. 13. The Hilbert vibration decomposition of the signal YðtÞ ¼ y2ðtÞ�vðtÞ. The first two components of the signal are presented: (a) component

instantaneous frequency; (b) component envelope. The lowest frequency component is denoted by a solid line when a higher frequency component is

denoted by a dashed line. Initial conditions: y10 ¼ y20 ¼ y30 ¼ _y20 ¼ _y30 ¼ 0; _y10 ¼ 1:5; system parameters: k¼ 1; ka ¼
4
3; e¼ 0:01 ;l¼ 0:2.

Y. Starosvetsky, O.V. Gendelman / Journal of Sound and Vibration 329 (2010) 1836–18521846
4.2. Analytical treatment

Results of Hilbert Vibration Decomposition (Section 4.1) motivate us to assume 1:1:1 motion due to its major
prevalence over other vibration components. Therefore using this assumption we define the new changes of variables
(slightly different from the previously presented in (6)) as follows:

o1 ¼ x1�x2;o2 ¼ x2�xa;u¼ x2þexa

j1expðitÞ ¼ _o1þ io1

j2expðitÞ ¼ _o2þ io2

j3expðitÞ ¼ _uþ iu (15)

Substituting the new variables (15) into (6) and averaging over the fast unit frequency, we derive the following set of
modulation equations:

_j1�iekj1þ
3ieka

8
jj2j

2j2�
el
2
j2 ¼ 0

_j2þ
i

2ð1þeÞ ðj2�j3Þþ
iek
2
j1�

3ið1þeÞka

8
jj2j

2j2þ
ð1þeÞl

2
j2 ¼ 0

_j3þ
ie

2ð1þeÞ ðj3�j2Þþ
iek
2
j1 ¼ 0 (16)

We are interested in the description of the relaxation type motion provided by (16). To this extent it is rather natural to
introduce two time scales; the ‘slow’ time scale t0 ¼ t and the ‘super-slow’ time scale t1 ¼ et. Introducing the slow time
scale to (16) and taking the leading order approximation ðe-0Þ one obtains:

_j1 ¼ 0

_j3 ¼ 0

_j2 ¼�
i

2
j2�j3

� �
þ

3ika

8
jj2j

2j2�
l
2
j2 (17a)
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The System (17a) depicts in the leading approximation the jumps in the response of modulated System (16). Observing
the fist two equations of (17a) one finds that in the leading approximation both variables j1;j3 are constants of the
motion in respect to a slow flow. Therefore they can be regarded as functions of super-slow time scale only
j1 ¼j1ðt1Þ; j3 ¼j3ðt1Þ. The system under investigation (16) contains one slow ðj2Þ and two super-slow variables
ðj1;j3Þ.

In order to complete the treatment, we need to describe of super-slow evolution of the solution on the super-slow
invariant surface. For this sake we assume that in the infinite limit of slow time scale the solution is attracted to the super-
slow surface which means that system evolves only at the super-slow time scale Fðt1Þ ¼ limt0-þ1j2ðt0; t1Þ. Later on we
will refer to this super-slow surface as a slow invariant manifold (SIM). Therefore introducing the super-slow time scale
ðt1 ¼ etÞ into (16) and taking the leading order approximation ðe-0Þ one obtains:

j1
0 ¼ ikj1�

3ika

8
jFðt1Þj

2Fðt1Þþ
l
2
Fðt1Þ

j3
0 ¼ �

i

2
j3�Fðt1Þ
� �

�
ik

2
j1

�
i

2
Fðt1Þ�j3

� �
þ

3ika

8
jFðt1Þj

2Fðt1Þ�
l
2
Fðt1Þ ¼ 0 (17b)

Two first differential equations of (17b) describe the super-slow evolution of the modulated system. The third equation
of (17b) is algebraic one and it describes the SIM surface mentioned above. We will start the analytical treatment of a
relaxation type motion from the projection of the SIM on a plane. As a plane of projection we choose the two amplitudes of
F;j3 ðjFj; jj3jÞ. Simple algebraic manipulations performed on the last equation of (17b) bring it to the following form:

jj3j
2 ¼ ðjFj�3

4kajFj3Þ2þl
2
jFj2 (18)

This projection is illustrated in Fig. 14.
The projection of the SIM described by (18) suggests for possibility of the relaxation oscillations, if the super-slow flow

will bring the phase trajectory to the fold lines. However, the number of relaxation cycles exhibited by the system under
consideration will be finite in contrast to the insufficient number of cycles performed by a stable SMR response regime in
the case of externally forced system. This is due to the presence of damping in the system and an absence of external
source of energy. The other difference from the previously considered cases is in absence of additional attractors on the
stable branches of SIM. Therefore, once the system being provided the sufficient amount of initial energy it jumps to the
upper stable branch of the SIM and exhibits few relaxation cycles. This relaxation type motion holds until the total amount
Fig. 14. SIM projection on a plane of jFj; jj3j. Dashed line refers to the unstable branch of SIM; solid line refers to the stable branch of SIM.
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of energy is dissipated to a level which is not sufficient for another jump (to the upper branch of the SIM). In this final stage
of motion the system simply remains on the lower stable branch of the SIM and gradually evolves towards a trivial
equilibrium point ðj10 ¼F0 ¼j30 ¼ 0Þ.

By now we gave only a qualitative description of the systems dynamics. Hence, in order to complete the treatment it is
important to describe the evolution of the system on the stable branches of SIM. To this end we refer to System (17b)
which describes a super-slow dynamics of the full (modulated) system (16).

Using slow invariant relation:
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the slow evolution system (17b) may be reduced to the following form:
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At this point it is convenient to introduce polar coordinates:

j1 ¼N1expðiW1Þ;F¼N2expðiW2Þ;j3 ¼N3expðiW3Þ (21)

Substitution of (21) into (20) implies:
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(22)

Additional variable of relative phase W¼ W1�W2 is introduced to (22) and after some lengthy manipulations the System (22)
is spitted to the set of three real differential equations of first order:
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The reduced set of equations (23) depicts system evolution on stable branches of SIM. Trajectories of the flow on SIM may
be visualized in a 3D space as it is shown on Fig. 15.

The 3D plot of the super-slow system dynamics brought in Fig. 15 requires some explanation. Let us start with the
definition of the fold planes in this particular case. The fold planes are derived straightforwardly from the RHS
denominators of the super-slow flow equations. Thus setting the denominator to zero one obtains:
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Nontrivial solutions of (24) will yield critical values of N2. These critical values have been already addressed earlier and
they constituted the fold lines for a two dimensional case. In the currently considered 3D case they turn into the fold
planes. These fold planes are illustrated in Fig. 15. It is clear that the fold planes actually partition the three dimensional
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Fig. 15. Super-slow system dynamics on the SIM. Fold planes are marked with rectangles. Stable and unstable branches of SIM are notified on the plot

with arrows.
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space of SIM into three regions. The first region N2oN2l relates to the stable branch of SIM. Apparently the intermediate
region N2loN2oN2u constitutes the unstable branch of SIM and finally the upper region N2uoN2 is another stable branch
of SIM.

These regions are denoted at Fig. 15 with arrows. Two pairs of phase trajectories (each trajectory being supplied the
different initial conditions) are illustrated on both stable branches of SIM (Fig. 15). The arrival of the trajectories to the
folds is equivalent to cycles of the relaxation oscillations.

As a final task of the present study we aim to demonstrate the application of the previously developed mapping
diagrams to the transient, relaxation cycles of the system under investigation. It is worthwhile to emphasize that no one
expects to find any attractors in the free, damped system. Therefore, as it was already mentioned all the trajectories
exhibiting several relaxation cycles are eventually damped out to the trivial attractor. However, it is still essential to
demonstrate an extension of the developed mapping procedure from 1D maps to 2D ones.

As a basin of jump for the map we define the lower fold plane ðN2 ¼N2lÞ. The jump from the lower stable branch of SIM
to the upper one is addressed by the algebraic relationship (19)) of slow invariance under the fast flow. Therefore the point
of landing on the upper stable branch, namely a triple ðN1u;N2u;WuÞ are calculated in a same manner as before. To be more
specific we describe the calculation of the triple for a first jump the second jump is treated in a same way.

As it was already mentioned in the beginning of this section the variables j1;j3 can be regarded as constants of the
motion under the slow flow (note that this is true only for zero approximation). Therefore the polar coordinates namely
N1;W1;N3;W3 are also constants under the slow flow. Dividing the super-slow invariant relation (19) by expðiW1Þ it can be
reformulated in polar coordinates as following:
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Now the LHS of (25) contains only the fast variables N2;W which enter the slow invariant relation. Relation (25) suggests
for the slow invariance of LHS under the fast flow. Therefore picking arbitrary values of N20;W0 on the lower plane one can
also calculate their values on the upper stable branch (exactly in the same way it was done before).
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Since the value of N1 also constitutes the constant of the motion under the slow flow then its value remains unchanged all
the way from the lower fold plane to the upper stable branch. Thus, we can see that the triple N1u;N2u;Wu can be found from
N10;N20;W0 by using the slow invariance relation. Actually this fact enables us to construct the two dimensional mapping
diagrams from the basin of jump (lower fold plane) to itself. All the steps of a map construction are illustrated in Fig. 16.
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Fig. 16. Illustration of a two dimensional mapping diagram construction; dashed arrows refer to a fast jumps; solid arrowed lines refer to a slow

evolution on the stable branches of SIM governed by System (23).

Fig. 17. Sketch of 2D mapping diagram.
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The final 2D mapping diagram is shown schematically at Fig. 17. The point picked at the initial condition in the basin of
the jump is mapped to other point of the same basin after two jumps and evolution at the upper branch of the SIM:

The described procedure of 2D maps construction was verified by comparison with numerical simulation of the time
series in initial system (4) (Fig. 18).

As one can see from the simulation (Fig. 18) there is a fairly good correspondence between analytic and numerical
results. The number of transient jumps is the same for both analytical approximation and numerical simulation of a true
system response (4). However, one can observe a definite inconsistency in synchronization of the analytical and numerical
models. This can be attributed to the fact that a condition of the 1:1:1 resonant motion is not fulfilled by system (4) for
several small time intervals due to the alternating captures and escapes from resonance. Moreover, the developed singular
asymptotic approximation of zero order also contains certain error.

5. Conclusions

The 3DOF system comprised of two weakly coupled linear oscillators with identical linear frequencies and NES attached
to one of them is investigated. The primary system of linear oscillators is subject to initial (shock) excitation. In the first
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Fig. 18. Time series (numerical integration) of the response of original system (4.112) (solid line); response of analytical approximation (bold dashed

lines denote slowly evolved intervals, dashed arrows denote fast jumps).
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hand the underlying Hamiltonian system was considered. This Hamiltonian system has been averaged under the
assumption of (1:1:1) resonance. Two constants of modulated (averaged) motion were revealed. Hence, the six
dimensional averaged system is reduced to a three dimensional one by using these constants of motion and additional
symmetry of the averaged system. Poincare maps are constructed for the reduced averaged system. It was also
demonstrated by the Poincare maps that the regime of 1:1:1 resonance prevails in the undamped system only for rather
small levels of initial excitation. This observation has been validated by a direct numerical simulation of both true and
averaged systems and also by the FFT diagrams.

In spite of the failure of the averaging procedure for the higher levels of initial excitation when applied for a
Hamiltonian system it still works fairly well for the damped system. To illustrate this fact the Hilbert Vibration
Decomposition (HVD) method was applied on the response of a damped system subject to higher levels of initial
excitations. It was shown by the HVD that there is a single significant component of the response regarded to the 1:1:1
resonance which makes the averaging procedure valid for even higher levels of initial excitations when damping is present
in the system.

It is also clear from the results of the present study that the previously developed method of 1D maps [15] providing the
tools for studying the existence of SMR in the 2DOF systems given to harmonic excitations may be successfully applied to
the system of higher dimensionality comprised of two linear oscillators with identical frequencies (subject to initial
excitation) and NES attached to one of them. It is essential to emphasize once again that in contrast to the previously
demonstrated 1D maps [15] for a 2DOF systems the maps presented herein are two dimensional and are more difficult for
use in the design. However, we believe that the analytical method extended to the 3DOF system containing internal
resonance will be of use in further studies for this kind of systems.
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